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Abstract. Road damage produces serious problems for the driver such as travel 
efficiency, vehicle value, and even driver safety. In some cases, road damage 
causes accidents and ends in death. Currently, road damage detection research 

extends to grow and present various approaches such as the implementation of 
an accelerometer sensor. However, the implementations face lacks of accuracy 
since unable to work in real-time and poor implementation. In the end, the system 

inadequate to identify damaged roads effectively. Therefore, a comprehensive 
study was proposed. Firstly, data collection is conducted by applying a low-pass 

filter to obtain accurate data. The next step is estimating the range value of the 

accelerometer graph. In the final step, the classification is performed to identify 
road conditions into smooth, medium and poor. Based on some experiments that 
have been done, the proposed method accurately recognizes road conditions by 
86.67%. 
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1  Introduction 
 
Damaged roads and potholes cause serious problems that impact the road efficiency, 

the value of the vehicle, even the safety of the driver along the trip  [1], [2]. In some 

cases, drivers not only suffer material losses but also threaten life and even end in death 

[3], [4]. Those problems are experienced by most peoples of developing countries to 

developed countries [5], [6].  Therefore, road damage is required serious attention, 

especially early detection to identify which paths are damaged to reduce victims. 

Nowadays, many studies conducted to identify damage to the road.  Commonly, 

some of the research applied an image processing approach to identify damaged roads 

and potholes [6]–[8]. Despite giving accurate results, the implementation of the image 

processing method encountered dilemmas when employed in the rainy weather because 

the road becomes wet and dirty. Besides, this has an influence on the accuracy of the 

method during the analysis process. 

There are several studies combine image processing approaches with machine 

learning methods to gain maximum results [8], [9]. Although it provides precise results, 

the employment of machine learning demands large resources since it requires complex 

computing that effects in slowing down the analysis process. 

Another alternative is to use sensing technology such as an accelerometer to gain 

information on the road surface. An accelerometer has 3-axis like x, y, and z that has a 
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value describes the vibration rate. Based on observations of those values, the method 

adequate to recognize road conditions well [10], [11]. Data obtained from the 

accelerometer are investigated using machine learning methods to gain accurate results. 

On the other hand, those studies only distinguish the road into smooth and non-smooth 

which indicates potholes. 

Therefore, a new approach is proposed to enhance the analysis process to obtain 

accurate results. The proposed method utilizes the accelerometer sensor in the 

smartphone since it is equipped with sensing technologies which are proven in several 

studies. A low-pass filter is performed to obtain data precisely. Afterward, the data are 

investigated using range value estimation which provides a mechanism to reveal 

accelerometer values that range from low to high. The final step is a classification phase 

to identify the road conditions into smooth, medium, and poor. 

The contribution of this research is to present a comprehensive road condition 

information that can be utilized by Google Maps, Google Street View or Waze to 

precisely visualize the length of the damaged road. Additionally, it improves alertness 

and warns the driver during driving, especially at night. Moreover, the proposed method 

is efficiency to assist the government to arrange an optimal allocation for road 

infrastructure development and maintenance. 

  

2  Related Works  

Today, most research on-road damage and potholes detection on smartphones 

implements Accelerometer and Gyroscope sensors. Accelerometer and Gyroscope is a 

type of motion sensor that is embedded in a smartphone to observe device motion or 

movements such as tilt, shake, rotation, and swing. Motion sensors are used to reflect 

the physical environment where the smartphone is located. For instance, it carried when 

running and biking or even placed on the dashboard inside the car [12].  
Some of the studies have confirmed the superiority of both sensors and show 

satisfactory results such as control mobile application, energy estimation, and 
sleepiness detection [13]–[15]. It is more effective than applying a method based on 
image processing because it lacks of the computational process and found obstacles 
when implemented in rainy weather.  

Allouch et al. [16] utilize accelerometer and gyroscope sensors to recognize 
highway conditions. The first step is collecting data from both sensors and perform a 
low-pass filter from 3-axis. Afterward, Allouch et al. perform feature extraction to 
obtain accurate results. In the selection process, the Correlation-based Feature Selection 
(CFS) method is adopted to reduce irrelevant information. Allouch et al. choose one of 
three methods (Decision Tree C4.5, and Support Vector Machine (SVM), and Naive 
Bayes) to classify road conditions based on the best result of conducted experiments. 
Despite showing accurate results, some weaknesses were found in this study.  In the 
feature selection process, the research involves the CFS method which is tested on the 
WEKA application and conducted separately from the smartphone. Meanwhile, the 
classification method is very complicated and requires a high computing process. 
Besides, this research is only able to divide roads into 2 categories which are smooth 
and poor conditions. 

Accelerometer and Gyroscope have different functions. Gyroscope is used to 
identify the position, rotation, and orientation of smartphones as implemented in most 
gaming applications. Meanwhile, the Accelerometer is commonly used to estimate 
acceleration, vibration, and impact of the smartphone. Therefore, in this study, the 
accelerometer sensor is preferred instead of the gyroscope because it is more suitable 
for identifying vibrations inside the car caused by poor road conditions.   
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Figure 1. Classification of Road Conditions Based on Accelerometer Graph Analysis: 

(a) Smooth Road Condition; (b) Medium Road Condition; and (c) Poor Road 

Condition 

Gueta et al. [17] used an accelerometer sensor to detect gaps and potholes on the 
highway. The proposed method implements temporal and spectral feature analysis. 
Temporal analysis is taking 150 sample data for 3 seconds with a maximum amplitude 
of 12.92 m/s2. This method serves to calculate the magnitude, variance, and speed of 
the accelerometer sensor. Meanwhile, Spectral Feature Analysis is the process of 
analyzing the amplitude of vibrations generated using the Morlet Wavelet method. At 
the classification stage, Gueta et al. apply the Vector Machine Classifier based on the 
results of the temporal and spectral features. Based on some experiments, Gueta et al. 
obtained an accuracy of 86.15%. There are several weaknesses in this study. The 
proposed method is only be applied to highways which have few patches, gaps, and 
potholes. Besides, Gueta et al. didn't use the preprocessing stage on the accelerometer 
sensor to reduce noise. Additionally, during the testing process, the method only 
accurately discovers anomalies when driving at high speed because it requires 
vibrations with high amplitude. 

 

3  Proposed Method 

This research is organized into 3 stages: Data Collection, Range Value Estimation, and 

Road Damage Classification as shown in Figure 2. All stages of this study are obtained 

on smartphones unlike previous studies conducted in separate devices. It aims to 

address the road damage analysis process work real-time and flexible. Besides, the 

smartphone is currently equipped with different sensors that have been tested in various 

fields. 

 



 

 

 

 

Choirul Huda et al., Road Damaged Analysis (RODA)...  141 

 

 

p-ISSN: 2540-9433; e-ISSN: 2540-9824 

 
Figure 2. Stages of The Proposed Method 

3.1 Data Collection 
 
This stage has an important role in road damaged analysis. First, activate sensors and 

select the accelerometer sensor specifically in a smartphone. Afterward, generate three 

orthogonal contain x, y and z axes of an accelerometer sensor along with the value 

based on smartphone motion.  

Next, perform a low-pass filter to reduce noise and isolate the gravitational force 
that is unnecessary but reveals during the process. Low pass filter is a filter that is 
commonly used in an electronic device which passes low-frequency signals and 
rejected high-frequency signal. In this research, each of triaxial accelerometer will be 
preprocessed with a low-pass filter.  

 

Algorithm 1 Low-pass filter 

1: procedure LOWPASSFILTER 

2:  loop:   

3:      y[i]  α * y[i] + (1 - α) * x[i] 

4: return y 

 

Algorithm 1. illustrates a low-pass filter stage. x[i] is an array value of x, y and z 

axes obtained in real-time. Meanwhile, y[i] consist of 3-axes and shows the final value 

of the filtration process. While 𝛼  is a low-pass weight that will be applied to the 

filtration process which is set at 0.8. 

During the data collection process, sometimes cars pass through potholes. It has an 

impact on smartphone motion not only horizontally but also vertically. Horizontal 

movement is also known as acceleration represented by x and y axes, while vertical 

motion is represented by the z-axis. Therefore, magnitude calculation is performed to 

combine values from all 3-axis and to keep the measurement results accurate. It also 

anticipates the orientation of the smartphone that is unappropriated, for example 

switching from vertically or horizontally and vice versa. 

Equation 1. shows the calculation of magnitude. y[0]2 denotes the square of the x-

axis and y[1]2 indicates the square of the y-axis. Whereas y[2]2 expresses the square of 

the z-axis. y denotes the final result of the data collection process. Figure 3. illustrates 

the whole steps of the data collection process initiate by activating the accelerometer 

sensor until the final result.   

 

 𝑦 =  √𝑦[0]2 + 𝑦[1]2 + 𝑦[2]2  (1) 
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Figure 3. Steps of Data Collection Process 

 
Figure 4. Graph of The Accelerometer in The Data Collection Phase 

The results of the data collection stage are displayed in a graph to easily analyzed, 

as shown in Figure 4. The next phase will investigate the range of values during 

vibrations that occur on the smartphone. 

3.2 Range Value Estimation  

This section aims to find the range value between two points adjacent to each other as 

in Figure 4. The data is displayed in real-time so it takes a special algorithm to calculate 

precisely. 

When the system starts, the first point will be marked as an array i to 0 or written 

as i[0] and the second point as i[1].  Then the distance between the two adjacent points 

will be calculated. For example, if i[0] is 8 m/s2 and the second point is 6m/s2, then the 

range or difference is 2m/s2. When the system increments and array i has a value of 2 

(i[2]), the value in i[1] will be assigned to array i[0] and the value in array i[2] is 

initiated into array i[1] so that the calculation only involves 0 and 1 arrays. 

 

Algorithm 2 Range Estimation 

1: procedure RANGEESTIMATION 

2:       accValue[i]  y   

3: if (i equals 0):  

4:     range  accValues[0] – accValues [1] 

5:     totalRange += abs(range) 

6: endif  

7: if (i > 0): 

8:     accValues[0] – accValues [1] 

9:     i  1  

10: endif  
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Figure 5. An Illustration of Range Value Estimation 

Absolute value is applied to maintain the value always in a positive number because 

sometimes the result is a negative amount. Algorithm 2. explains the calculation of the 

range value at this stage. The algorithm is constructed to keep estimations as easy as 

possible so that the system works efficiently. 

Figure 5. illustrates the steps of range value estimation in Algorithm 2. The range 

values are represented as a, b, c and d and will be calculated in the next section. 

3.3 Road Damage Classification  

The last stage is the classification of road conditions based on the sum of the difference 

in value within a certain period. The system is proficient to generate as many as 14-15 

points and calculate 13-14 values between points in a second when the system is started. 

However, the length of time of observation for determining road conditions will be 

further investigated. 

 

 
Figure 6. Classification of Road Conditions Based on Accelerometer Graph Analysis: 

(a) Smooth Road Condition; (b) Medium Road Condition; and (c) Poor Road 

Condition 
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In this study, road conditions are divided into smooth, medium and poor. Figure 6. 

shows the classification of road conditions based on the accelerometer sensor. Smooth 

states the stable road conditions that verified by the accelerometer graph shown in 

Figure 6(a). Medium states that the bumpy road conditions are caused by holes and 

cracks as seen in Figure 6 (b). It can be seen in the graph which starts to show a decrease 

and increase in value that is higher than the smooth conditions. Whereas poor states 

that road conditions are dominated by potholes and damaged as seen in Figure 6 (c). It 

can be seen from the accelerometer graph which is dominated by raising and degrading 

the value. 

 

4  Results and Analysis 

Experiments were taken along rural roads by driving the car for 30-40 minutes and 

covered a distance about 20 kilometers at speeds of between 10-30 km/h. The data was 

acquired using an Isuzu Panther powered by 2500cc that manufactured in 2005. The 

smartphone is equipped with Octa-core CPU 2.0 GHz, 3GB RAM, and an 

Accelerometer Sensor. The device is placed on the dashboard inside the car using a 

phone car holder. 

The first step is to analyze the optimal length of time to observe road conditions. 

The proposed method capable to generate 14-15 points in a second. The observation 

time is divided into 5, 10, 15 and 20 seconds. Each interval is capable to produce 72, 

143, 216, and 289 points. The distance between points (range values) will be 

accumulated at the end of the calculation. It aims to accurately distinguish road 

conditions into smooth, medium and poor. 

During the testing phase, the accelerometer graph does not always display 

significantly results. Sometimes there is a small increase in the graph even when the 

road conditions are relatively poor. While the system observes for 5 seconds, the 

analysis of road conditions is still less than optimal. That is because the number of 

points used still does not meet to distinguish road conditions precisely. 

The most optimal result is when the system applies an observation time of 10 

seconds. When the system applies observation times 15 and 20 seconds, the system is 

also able to detect damaged roads accurately.  There are no specific studies to determine 

how long observations are, but Amirgaliyev et al. [10] applied time windows for 10 

seconds. Besides, in some experiments, the interval of 15 and 20 seconds requires 

longer iterations, so it is not recommended to implement this period. 

The next analysis aims to determine the accumulation of accelerometer range values 

to classify road conditions into smooth, medium, and poor. An observation is arranged 

for 10 seconds and generated 143 points. Table 1. shows the distribution of range values 

for each road condition. For each row, 15 experiments were performed and the results 

were analyzed using precision estimation.  

Precision is performed to estimate the number of True Positives (TP) and False 

Positive (FP) to evaluate the performance of the proposed method. The description of 

the precision estimation variable is as follows: 

 True Positive (TP); determined when both of the actual value and the 

detection result worth “Yes”. 

 False Positive (FP); determined when the actual value worth “No” and 

the detection result worth “Yes”. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 𝑥 100% 

(2) 

 

Some experiments sometimes show inaccurate results. For instance, in the first row, 

the smooth conditions showed accumulations ranging from 0-100 m/s2, the condition 

of the medium road was between 101-180 m/s2, and the poor condition was more than 

180 m/s2. The proposed method capable to identify 7 True Positive and 8 False Positive 

of 15 attempts, so the precision can be estimated by performs Equation 2 and obtain as 

46.67%.  

 

Table 1. Some Experiments on An Accumulation of Range Values for Each Road 

Condition 

No 
Accumulation of range values (m/s2) True 

Positive 
Accuracy 

Smooth Medium Poor 

1. 0 – 100 101 – 180 > 180 7 46.87% 

2. 0 – 120 121 – 200 > 200 8 53.33% 

3. 0 – 140 141 – 220 > 220 10 66.67% 

4. 0 – 160 161 – 240 > 240 13 86.77% 

5. 0 – 180 181 – 260 > 260 11 73.33% 

6. 0 – 200 201 – 280 > 280 9 60.00% 

 

The system acquires the best result at fourth row when it applies an accumulation 

of 0 - 160 m/s2 under smooth, 161 - 240 m/s2 on the medium, and more than 240 m/s2 

under poor road conditions. The proposed method is adequate to identify 13 True 

Positive and 2 False Positive and gain the precision as 86.77% 

 

 
Figure 7. An Illustration of Mobile-UI Under Smooth Road Conditions. 

Figure 7. illustrates a Mobile User Interface (UI) that are consists of 5 sections. 

Section 1 shows some values of 3-axes (x, y, and z) of the accelerometer sensor 

visualized in graphical form. Section 2 represents a power button to run the observation 

time. Meanwhile, section 3 shows the results of an accumulation of accelerometer range 

values where section 4 refers to the final outcome of road conditions. Section 5 indicates 

a feature of adjustment to perform some experiments in Table 1. 
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Figure 7. illustrates some experiments of road damaged analysis that performed 

inside a car. The proposed method adequate to identify road into smooth, medium and 

poor conditions.  

 

 
Figure 8. An Implementation of Road Conditions Analysis within a car: (a) Smooth 

Condition; (b) Medium Condition, and; (c) Poor Condition. 

The Performance of an application is also tested. It intended to figure out the 

efficiency of some resources regarding CPU, Memory, and Battery of execution of the 

proposed system. Some automation testing platform can be adapted to measure the 

performance. However, Android Profiler prefer to employ rather than perform other 

tools since capabilities for monitoring and providing real-time data of mobile resources. 

Android Profiler capable to reveal all information regarding user activity, input, and 

even screen rotation [18].  

 

 

Figure 9. CPU Usage 
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Figure 8. shows CPU Usage for testing phase for 70 seconds. At 0-5 seconds after 

running, CPU usage has increased by up to 32%. Afterward, CPU usage has decreased 

slowly to stable by 20.4%. At idle or standby position, the CPU shows 12%. After the 

data collection phase operated in the 59th second, the CPU usage increases a maximum 

works by 34%. It can be concluded that the CPU usage to run an application is very 

light, which is between 12-34%. 

 

 

Figure 10. Memory Usage 

Figure 9. shows Memory Usage in the testing phase of the proposed system for 70 

seconds. Android Profiler capable to shows memory allocation in a timeline and 

separate into 7 categories. Java means memory allocated from Java code by 9.6 MB. 

Native means the capability of the system to handle various tasks such as image and 

other graphics by 23.4 MB. Meanwhile, Memory used for graphics buffer queues that 

display on the screen by 27.7 MB. In the end, all memory used during the testing phase 

of the proposed system as 88.4 MB. It indicates that memory usage is extremely low 

compared to the entire smartphone memory.  

Meanwhile, Figure 10. illustrates Battery Usage labeled as Energy in the testing 

phase of the proposed method for 70 seconds. Android Profiler distinguishes battery 

level into 3 categories i.e. Light, Medium, and Heavy. At the moment system launched, 

the battery used slowly increases from Light to Medium. After 20 seconds of running, 

the battery level decreases slowly to stable at Light level and back to Medium when 

performing an input event but mostly Light. It is concluded that during the testing phase, 

the proposed system requires low energy and won't drain the battery consumption. 

The proposed method has some improvements compared to the previous studies as 

seen in Table 2. The proposed method adequate to work in real-time compared to the 

previous studies since the computing processes is done within a smartphone. Road 

conditions effectively classified into three categories: smooth, medium, and poor while 
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Amirgaliyev et al. [10] is only qualified to separate road conditions into smooth and 

non-smooth alone (also known as poor condition).  

 

 

Figure 11. Battery Usage 

Meanwhile, Carlos et al. [11] applied support vector machine (SVM) and third-

party applications such as the Pothole Lab to analyze road conditions. Although it 

shows satisfying result in some experiment, the study has some weakness. First, this 

study didn’t apply preprocessing phase so that the validity of final result can be 

questioned. Secondly, the research incapable to recognize road conditions in real-time 

since an implementation of machine learning that requires high computation process. 

The proposed method also capable to identify road conditions at low speeds while 

Harikrishnan et al. [19] require high speeds to obtain greater vibrations to make the 

system more accurate. 

 

Table 2. The Comparison with Some Previous Studies 

Method Result of Road 

Classification 

Low-

pass 

Filter 

Accuracy Real-

time 

Manual Annotation 

and Graphical 

Visualization  [10] 

Smooth and non-

smooth  

No Not 

Mention 

No 

Detector SVM (Z) 

[11] 

Asphalt and Metal No Not 

Mention 

No 

Gaussian model-

based [19] 

Hump and Pothole No Not 

Mention 

No 

Proposed Method Smooth, Medium and 

Poor 

Yes 86.67% Yes 



 

 

 

 

Choirul Huda et al., Road Damaged Analysis (RODA)...  149 

 

 

p-ISSN: 2540-9433; e-ISSN: 2540-9824 

5  Conclusion  

In this study, a new method is designed to recognize and classify road conditions 

utilizing an accelerometer sensor on a smartphone. The proposed method is effective to 

identify and classify road conditions into smooth, medium, and poor. The research also 

improved the lack of previous studies and provided new approaches to investigate road 

conditions in real-time. Based on some experiments that have been conducted, the 

proposed method efficiently identifies road conditions with an accuracy of 86.67%. 

In future works, some improvements will be applied especially at the quantification 

stage using new techniques such as signal preprocessing to analyze the accelerometer 

graph and recognize road conditions more quickly. Furthermore, the system will 

collaborate with other sensors and methods to identify the length of the damaged road 

precisely. 
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